Length, Area and Volume

Volume and Surface Area Formulas

sciencenotes.org

Topic: Perimeter

- I can convert between metric units of length.
 - e.g. Convert these measurements to the units shown in the brackets.
 - **a** 9.2 cm (mm)
- **b** 61 000 cm (m)

- 2 I can find the perimeter of basic shapes, including composite shapes.
 - e.g. Find the perimeter of these shapes.

Perimeter

What's perimeter?

- Perimeter of a shape is the distance around the shape
- Sides with the same markings are of equal length

$$P = 2 \times 5 + 3$$
$$= 13 \text{ cm}$$

Perimeter of Composite Shapes

- What's a composite shape?
 - o any shape that is made up of two or more shapes
- We see what lengths are on the outside some sides may now be shared
- Composite shape in real life:

Topic: Circumference and Sector Perimeters

- **6B**
- 3 I can find the circumference of a circle.
 e.g. Find the circumference of a circle with a diameter of 5 m, correct to two decimal places.

- 6B
- 4 I can find the perimeter of a semicircle or a quadrant.
 e.g. Find the perimeter of this semicircle correct to two decimal places.

Parts of a circle: distances

- Circumference: perimeter of a circle
 - remember: perimeter: distance around a shape
- radius: distance from centre of circle to its edge
 - B: How many radii can there be?
- diameter: distance from one end of the circle to the other, through the centre
 - diameter = 2 × radius (why?)
- sector: part of a circle marked off by an arc and its two radii
 - a fraction of the circle

Introducing: Pi π

- This is an irrational number: goes on forever, but approximately 3.14
- Archimedes approximated pi by drawing 2 polygons with 96 sides: inside a circle and outside
- Universal constant: relationshp between diameter and circumference

 π is on your calculator:

- Let's find it now
- in most calculators, it's on the *bottom* near the *right* of the numbers

Circumference of Circle diameter

Circumference Formula

 $\begin{aligned} & \text{Circumference} = d \times \pi \\ & \text{Circumference} = 2 \times \pi \times r \end{aligned}$

Where, d = diameter, r = radius (remember we said earlier: diameter = $2\times$ radius) and $\pi \approx 3.14$

Perimeter of a Sector

• Remember: Circumference = $\pi \times 2 \times r$

• Arc-length =
$$\frac{\theta}{360^{\circ}} \times \pi \times 2 \times r$$

- Perimeter = arc-length + $2 \times r$
- where r is the radius and θ is the angle of the sector Note: θ is not 0: it is a Greek symbol that just looks similar

Special sectors

- A half circle is called a semicircle
- A quarter circle is called a quadrant

Topic: Area of Quadrilaterals and Triangles

- 5 I can convert between metric units of area.
 - e.g. Convert these measurements to the units shown in the brackets.
 - **a** $5.32 \,\mathrm{cm}^2 \,(\mathrm{mm}^2)$
- **b** $728\,000\,\mathrm{cm}^2\,(\mathrm{m}^2)$

6 I can find the area of rectangles, triangles and parallelograms. e.g. Find the area of this triangle.

60

- 7 I can find the area of rhombuses and trapeziums.
 - e.g. Find the area of this trapezium.

Area of Quadrilaterals and Triangles

Quick check: What's an area?

• The area of a two-dimensional shape is a measure of the space enclosed within its boundaries.

Note: The height (h) in the formulas for the area of a triangle, parallelogram and trapezium must be perpendicular (at $90\circ$) to the base.

Topic: Area of a circle

Area of a Circle

• And guess what, $\pi \approx$ 3.14 is a bit less than 4 too!

• Area of circle = $\pi imes r^2$

ullet where r is the radius and $\pi pprox 3.14$

What if we have a fraction of a circle?

Topic: Composite Shapes

10 I can find the perimeter and area of simple composite shapes.
e.g. Find the perimeter and area of this composite shape correct to two decimal places.

Composite Shapes

Composite shape: any shape that is made up of two or more geometric shapes

For example: Any polygon can be broken down into triangles

 This fact is used by GPUs (Graphical Processing Units) to create graphics for video games

Perimeter and Area of Composite Shapes

- 1. To find the perimeter or area of a composite shape, we break it down into shapes we know (example)
- 2. a) Perimeter: find the perimeter of the individual shapes and subtract shared sidesb) Area: Find the area of the individual shapes

Steps to Find Areas of Composite Shapes

This can be by adding or subtracting shapes

- Divide shape diagram with lines (no overlapping shapes)
- Label sides/heights with dimensions
- Calculate areas (give them names like A_1)
- Add up all areas to find the total

Topic: Surface Area of Prisms

Prisms

What is a prism?

- 3d shape: solid
- cross-section is a polygon
 - o cross-section: what you get when you slice a shape like bread

Prism: a solid with a **uniform polygonal cross-section**

Prism		
Cross Section		

Prisms in real life

Prisms are named after their cross-section, e.g. triangular, pentagonal What kind of prisms are these?

• 👺: What's another name for a square prism? For a rectangular prism?

Surface Area of Prisms

To find the surface area of a prism, we break it down into its net

Net: a 2D illustration of all the surfaces of a solid

How to draw a net

Generally, each prism is made up of:

- a bottom and top (the cross-section)
- rectangles connecting these

- You can start with either a rectangle or the base
- Count sides to make sure you've got them all

Finding the Surface Area

- So you have the net, now what?
- Add up all the areas of the shapes in the net

Solid	Net	Surface area
Rectangular prism h		A = 2(lb + bh + lh)
Triangular prism	A B C	$A = \text{area}(A) + \text{area}(B) + \text{area}(C) + 2 \times \text{area}(D)$

Topic: Surface Area of Cylinders

What is a **cylinder**?

• Like a circular 'prism': with a uniform circular cross-section

Surface Area

Formula

- Area of the circles = πr^2 each
- Area of the "tube" = $2\pi rh$ (Why?)
- (We can unfold it into a rectangle with the circumference as a side)
- Put together, we get:

$$\mathsf{A} = 2\pi r^2 + 2\pi r h$$

• 5-11 Volume of a prism

Volume of Prisms

• 5-13 Volume and capacity

Capacity

What is capacity? What does it mean for a bottle to have more capacity?

- Capacity: the amount of fluid a container can hold
 - usually measured in litres or millilitres
 - also measured in kilolitres and megalitres

Real-life Examples of Capacity

milliLitre	Litre	kiloLitre	MegaLitre
1ml = an eyedropper	Milk comes in 1 Litre	4 full bathtubs = 1 kiloLitre	An Olympic swimming pool = 2.5 MegaLitres
center	center		

What's the capacity of your water bottles?

Converting between units

Remember: a millilitre is smaller than a litre, so a big number of millilitres will be a small number of litres, not the other way around

```
1 L = 1000 mL

1 kL = 1000 L

1 ML = 1000 kL

= 1,000,000 L (1 million litres!)
```

middleright

Converting to Capacity from Volume

bottomcorner

We can also convert from volume to capacity

$$1 \text{ mL} = 1 \text{ cm}^3$$

$$1L = 1000 \text{ cm}^3$$

$$1 \text{ kL} = 1 \text{ m}^3$$